Binary Search in Graphs Revisited
نویسندگان
چکیده
In the classical binary search in a path the aim is to detect an unknown target by asking as few queries as possible, where each query reveals the direction to the target. This binary search algorithm has been recently extended by [Emamjomeh-Zadeh et al., STOC, 2016] to the problem of detecting a target in an arbitrary graph. Similarly to the classical case in the path, the algorithm of Emamjomeh-Zadeh et al. maintains a candidates’ set for the target, while each query asks an appropriately chosen vertex– the “median”–which minimises a potential Φ among the vertices of the candidates’ set. In this paper we address three open questions posed by Emamjomeh-Zadeh et al., namely (a) detecting a target when the query response is a direction to an approximately shortest path to the target, (b) detecting a target when querying a vertex that is an approximate median of the current candidates’ set (instead of an exact one), and (c) detecting multiple targets, for which to the best of our knowledge no progress has been made so far. We resolve questions (a) and (b) by providing appropriate upper and lower bounds, as well as a new potential Γ that guarantees efficient target detection even by querying an approximate median each time. With respect to (c), we initiate a systematic study for detecting two targets in graphs and we identify sufficient conditions on the queries that allow for strong (linear) lower bounds and strong (polylogarithmic) upper bounds for the number of queries. All of our positive results can be derived using our new potential Γ that allows querying approximate
منابع مشابه
Solving the Target-Value Search Problem
This paper addresses the Target-Value Search (TVS) problem, which is the problem of finding a path between two nodes in a graph whose cost is as close as possible to a given target value, T . This problem has been previously addressed: first, for directed acyclic graphs; second, for general graphs under the assumption that nodes can be revisited given that the same edge can not be traversed twi...
متن کاملTarget-Value Search Revisited
This paper addresses the Target-Value Search (TVS) problem, which is the problem of finding a path between two nodes in a graph whose cost is as close as possible to a given target value, T . This problem has been previously addressed only for directed acyclic graphs. In this work we develop the theory required to solve this problem optimally for any type of graphs. We modify traditional heuris...
متن کاملA New Heuristic Algorithm for Drawing Binary Trees within Arbitrary Polygons Based on Center of Gravity
Graphs have enormous usage in software engineering, network and electrical engineering. In fact graphs drawing is a geometrically representation of information. Among graphs, trees are concentrated because of their ability in hierarchical extension as well as processing VLSI circuit. Many algorithms have been proposed for drawing binary trees within polygons. However these algorithms generate b...
متن کاملBalanced Degree-Magic Labelings of Complete Bipartite Graphs under Binary Operations
A graph is called supermagic if there is a labeling of edges where the edges are labeled with consecutive distinct positive integers such that the sum of the labels of all edges incident with any vertex is constant. A graph G is called degree-magic if there is a labeling of the edges by integers 1, 2, ..., |E(G)| such that the sum of the labels of the edges incident with any vertex v is equal t...
متن کاملConnecting Yule Process, Bisection and Binary Search Tree via Martingales
We present new links between some remarkable martingales found in the study of the Binary Search Tree or of the bisection problem, looking at them on the probability space of a continuous time binary branching process.
متن کامل